Presented by

Residential Behavior Change from a Time of Use Display

Hal T. Nelson

CEO

Res-Intel

COMPANY OVERVIEW

- Res-Intel is a CA Energy Commission-funded AI software company that has performed building energy benchmarking on most of California's Multifamily Residential (MFR) complexes.
- Owned and operated by social-equity focused data-scientists. Based in Portland, OR.

Our unique analytics and data sets include:

Communities for Conservation MFR Pilot (2015-2017)

SoCal Gas and SoCal Edison competition with 2,220 MFRs/90,000 meters SoCal Edison MFR Characterization (2017-2018)

Inventory and Benchmarking of SCE's entire MF portfolio Characterization & MFHOPPs Evaluation (2019-2021) SDGE ^{connected} Sempra Energy utility* 1. Inventory and Benchmarking of SDG&E's entire MF portfolio 2. MFHOPPs Impact Evaluation

SDG&E MFR

PG&E MFR Characterization (2020-2021)

Inventory and Benchmarking of PG&E's entire MF portfolio

THE IHD DEVICE AND SMARTPHONE APP

- **Purpose of this project:** to evaluate the demand response and energy efficiency effects of a Time-of-Use (TOU) Energy Display in-home-device (IHD)
 - Device capital cost \$19.77 each, \$.69 month O&M and messaging costs
- Stoplight logic to represent current TOU rate

- Messaging encouraged peakhour energy reductions during designated DR days.
- Customers were encouraged to reduce energy for the purpose of lowering environmental and economic costs.
- Messages also included recommended energy saving activities and messaging about peer effects and loss aversion

EMERGING TECHNOLOGIES COORDINATING COUNCIL

ET Summit 2021 STUDY DESIGN

ETCCCEMERGING TECHNOLOGIES

- Randomized Encouragement Design with control and treatment groups
 - Solicitation began on July 26, 2019 from a pool of SDG&E's TOU customers
 - Eligible customers received a "Call to Action" flyer by email and postal direct mail.
 - 1,000 customers opted into the study
- Customers who opted in were similar to those who did not. However:
 - 1. Opt-in participants were 50% less likely to declare a non-English preferred language.
 - 2. Opt-in participants were **nearly 4x more likely to have signed up for SDG&E's existing DR** program.

EVALUATION METHODOLOGY

- The IHD device was evaluated along two dimensions:
 - 1. Effectiveness of device in reducing consumption during 10 DR messaging days.
 - 2. Effectiveness of device in managing peak-hour (4-9pm) consumption when peak TOU rates increase.
- Changes in customer energy usage are evaluated using 2+ years of hourly advanced metering infrastructure (AMI) data for each of the 1,000 participating customers.
- Statistical modeling of customer energy usage involves two stages:
 - 1. Construct individual baseline models for each participating customer.
 - Gradient boost machines (GBM) for customer baseline modeling.
 - 2. Input prediction residuals (λ_i) from these models into a fixed effects regression

RESULTS

- Statistically significant reductions in hourly kWh
 occur where the shaded grey confidence intervals drop below zero (the dashed line).
- Significant reductions occurred on the hottest days (>85 degrees) in the early peak hours between 4pm and 6pm.

- Designated event days: There is consistent
 evidence that the IHD device and messaging did not
 cause any significant energy-use reductions.
- **Peak period reductions:** were **~3%** and statistically significant in 1 of 3 models.
- Seasonal reductions: activation of the device is associated with a reduction in peak-hour electricityuse on hot summer days, equal to about 8% of the average customer baseload.

•

High (°F)

ET Summit 2021 RESULTS (2)

- Savings from the device were driven primarily by those customers who had high baseloads, exceeding a daily average of 12 kWh.
- This finding conforms to the intuition that these customers have a higher margin of adjustment.

- The IHD Device Customer Survey was sent to 1,000 SDG&E customers over a 10-day time frame in January 2021
 - Average response rate of 37%

How often did you take action based on the notifications? 74 responses

PARTICIPANT BEHAVIOR

What actions did you take to reduce electricity use? 100 responses

Response

Used major appliances before 400 or after 900 pm

Turned off unused equipment

Turned on a fan or ceiling fan

Turned off my A/C $% \left(A^{\prime}\right) =0$ when not at home

Used a microwave or toaster instead of the stove or oven

Raised my thermostat to reduce A/C use

Pre-cooled my home before 400 p.m.

Cooked outdoors

I did not take any action

Filled my fridge with water to make it more efficient

COST EFFECTIVENESS

- The total resource cost (TRC) and cost benefits ratio (CBR) of the energy savings and demand reduction using:
 - The 2016 Demand Response (DR) Cost Effectiveness Calculator
 - The Energy Efficiency (EE) Cost-Effectiveness Tool
- Results
 - DR cost benefit ratio: ~6.4
 - EE cost benefit ratio: .22

ET Summit 2021 CONCLUSIONS

- 1. The IHD and smartphone application promote seasonal reductions of peak-hour energy usage on the order of 3 to 8 percent of typical use.
 - Reductions are concentrated on the **hottest days of the summer** (exceeding 85 degrees Fahrenheit).
- 2. Event-day messaging from the IHD Mobile App and device **did not** display statistically significant reductions in energy usage **on event days**.
 - Lack of results are likely due to small sample size and small effect size
- 3. Opportunities for IHD to mitigate impacts of opt-out and dynamic TOU rates for low-tomedium-income households
 - LMI customers tend to be renters, live in older, less insulated homes, and have landlords with little incentive to invest in EE upgrades
 - Since utility bills are the primary channel through which utilities disseminate information (through bill inserts, etc.), engaging customers in a meaningful way can be difficult.
 - Most customers spend an average of 8 minutes per year interacting with their utility bills (Tweed, 2016).
 - TOU rate implementation needs to be combined with education, access to energy efficiency measures, and targeted communication to avoid a costly shift for already energy-burdened households.

This project was funded by the California Emerging Technologies Program.

For more information, contact Jeff Barnes at jbarnes@sdge.com or Hal Nelson at Hal.Nelson@Res-Intel.com

The project report can be found at **TBD**

Thank you for your attention!

Please email me with questions.

Hal T. Nelson

CEO

Res-Intel

Hal.Nelson@res-intel.com

www.Res-Intel.com

