

OCTOBER 8 & 9 PDOWNEY, CA

ET Summit Fall 2018

COMMERCIAL + RESIDENTIAL BUILDINGS

Evaporative Cooling Update

Water Use Considerations

Theresa Pistochini Engineering Manager UC Davis Western Cooling Efficiency Center October 9th, 2018

WCEC Team

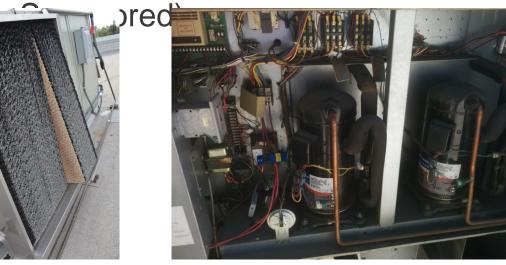
Key Sponsors:

California Energy Commission California Utilities Federal Agencies: DOE, DOD, NASA Corporate Affiliates

Established April 2007 Energy and Efficiency Institute at UC Davis

Mark Modera, Director Vinod Narayanan, Associate Director Theresa Pistochini, Engineering Manager

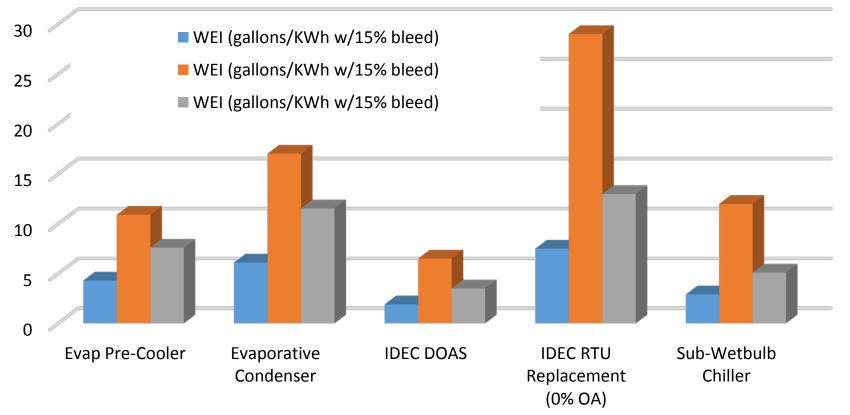
- 12 R&D Engineers
- Graduate and Undergraduate Students
- Outreach and Support Staff



Agenda

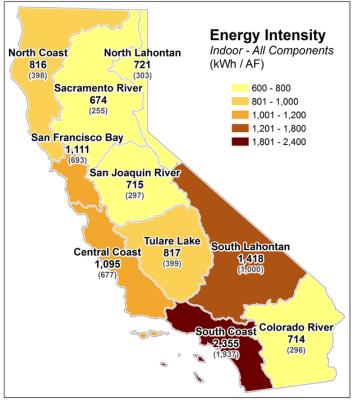
- Market adoption of evaporative cooling in California
- Water use efficiency in evaporative cooling
- Three recent evaporative cooling projects (SCE

Market adoption in California



- » Utility incentives are available from 20 California utilities
- » One manufacturer installed over 380 evaporative pre-coolers on big-box nationalchain retail stores, business case can be made without incentives
- » Major contract awarded to use evaporative pre-coolers to reduce commercial building energy use by 72.5 MW in SCE territory

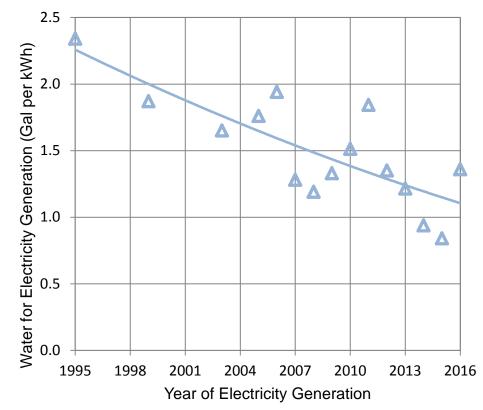
Water Energy Intensity (WEI)



Electricity in Water

- » Example: 10 Gallons consumed to Save 1 kWh
- Energy consumed for water delivery and treatment of 10 gallons of water is 0.02-0.07 kWh (2-7% of 1 kWh savings)
- » Overestimate because it includes electricity for waste water collection and treatment

» Negligible effect



Source: CWEE, 2016. Includes Extraction, Conveyance, Treatment and Distribution (Outdoor – upstream to customer) and Wastewater Collection and Treatment (Indoor – All components)

Water in Electricity

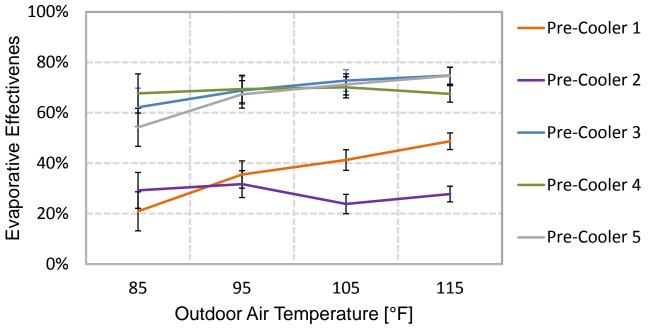
- » 2 to 10 gallons consumed to save 1 kWh
- Saving 1 kWh saves 1-2 gallon of water used for electricity production
- » Offsets water used for evaporative cooling

Source: Pistochini and Modera: Water-use efficiency for alternative cooling technologies in arid climates. Updated for California's electricity generation mix reported by the Energy Information Administration through 2016.

Water and Electricity: Cost Comparison

Metric	WEI = 2 Gal/kWh	WEI = 6 Gal/kWh	WEI = 10 Gal/kWh
Value of Electricity Savings (1 kWh) ¹	\$0.22	\$0.22	\$0.22
Value of Monthly Demand Charge Reduction ² (1 kW)	\$0.11	\$0.11	\$0.11
Total value of electricity savings	\$0.33	\$0.33	\$0.33
Cost of Water ³ at \$0.01 per gallon	\$0.02	\$0.06	\$0.10
Cost of Water as a % of electricity savings	6%	18%	30%

¹ PGE Peak Summer Time of Use Pricing, Medium Commercial: <u>https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_A-10.pdf</u> ² Monthly Demand Charge Savings of \$19.52/kWh amortized over 180 hours a month of estimated evaporative cooler operation ³ Black and Veatch 2012/2013 50 Largest Cities Water/Wastewater Rate Survey: \$0.0037-\$0.01821 per gallon in California

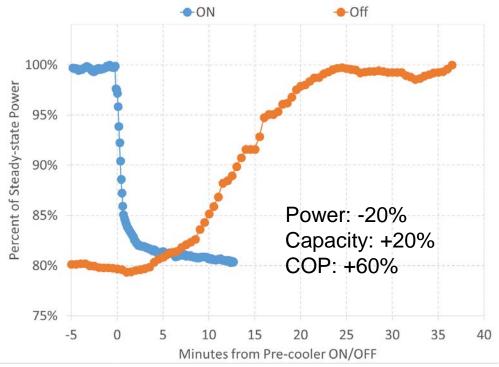


ASHRAE Test Standard

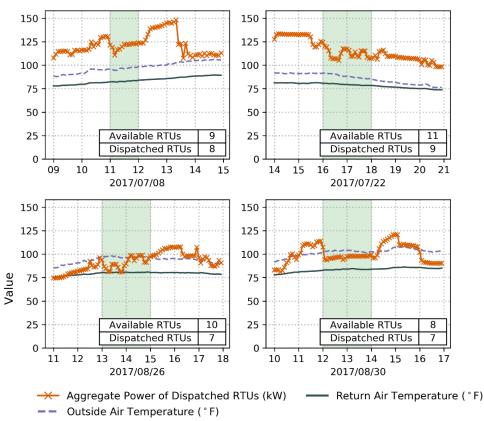
- Need to be able to compare performance
- Initiated ASHRAE Method of Test SPC-212

DISPATCHABLE CONDENSER-AIR PRE-COOLERS

Objective: Demonstrate potential of evaporative condenser-air pre-coolers as a dispatchable load balancing resource.


- Only use pre-coolers during a demand event
- » Quantify transient response of turning precooler on/off.
- » Laboratory and field test

DISPATCHABLE CONDENSER-AIR PRE-COOLERS Laboratory testing


- » Tested at 95°F/70°F, 105°F/73°F, 115°F/76°F (DB/WB)
- » 4-ton single stage RTU
- Results illustrate a quick power reduction during "ON" response (0.6 min to 50% of difference)
- » "OFF" Drying response ~13 minutes to return to 50% of difference

DISPATCHABLE CONDENSER-AIR PRE-COOLERS

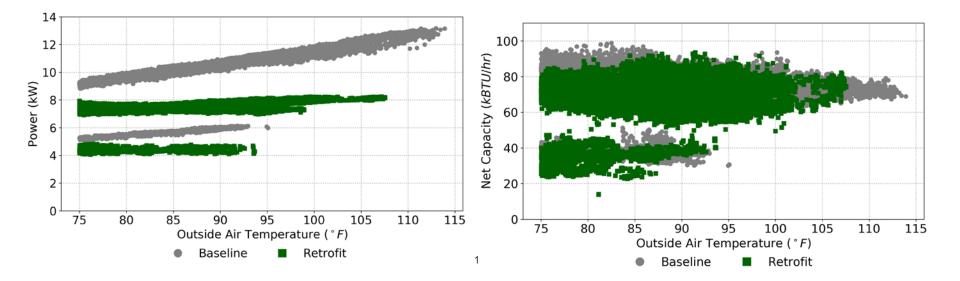
Field testing

- Pre-coolers installed on 180 tons of RTUs on big-box retail store
- Demand events simulated through the manufacturer's existing controls in summer 2017
- Difficulty in controls communication, RTUs did not receive signal reliably.
- » Successfully dispatched events reduced electricity demand 2-15%
- Water use rates were high at ~11 gal/kWh (manufacturer had bleed rates set too high)

RTU OPTIMIZATION PACKAGE

Objective: Demonstrate potential of retrofit controls to further increase efficiency and demand savings of RTUs

- Condenser-air pre-coolers greatest benefit at peak conditions
- » Variable speed controls biggest impact at part load
- » Combination is beneficial over all operating conditions and maintains capacity at peak



RTU OPTIMIZATION PACKAGE

- » Field test on 10-ton two-stage RTU
- » Retrofit included:
 - Two 7.5 HP VFDs (one for each compressor, set at fixed 48Hz)
 - Condenser-air pre-cooler with 70% direct evaporative effectiveness
 - Use of existing fan

This project was funded by the California Emerging Technologies Program.

For more information, contact Jerine Ahmed at jerine.ahmed@sce.com.

Questions?

Theresa Pistochini

Engineering Manager UC Davis Western Cooling Efficiency Center tepistochini@ucdavis.edu wcec.ucdavis.edu

