

OCTOBER 8 & 9 PDOWNEY, CA

ET Summit Fall 2018

COMMERCIAL + RESIDENTIAL BUILDINGS

Gas-fueled Absorption Heat Pump Commercial Water-Heaters

On the way to commercialization

Scott Reed VP Strategy & Marketing Stone Mountain Technologies, Inc.

Agenda

- 1. What is & why the gas-fueled Absorption cycle?
- 2. Application Focus: Restaurant Water-Heating
- 3. Application Focus: Commercial Laundry Water Pre-Heat
- 4. General progress towards commercialization
- 5. How Utilities Can Prepare
- 6. Q&A

Heat Pump Types

			GAHP	GEHP	EHP		
Comparing Various Types of Heat Pumps			Gas Absorption Heat Pump	Gas-Engine Heat Pump	Electric Heat Pump		
Thermodynamic Cycle			Gas Absorption	Vapor Compression	Vapor Compression		
What Drives the Compressor Stage?			Heat	Recip. Engine - mechanical	Electro. Motor - mechanical		
Input Fuel			NG, LPG, Oil, BioFuel	NG, LPG, Oil, BioFuel	Electricity		
Refrigerants			NH ₃ / H ₂ O	R410A, R134A, CO ₂	R410A, R134A, CO ₂		
GWP			zero	1300, 1725, 1.0	1300, 1725, 1.0		
Backup (resistance) Heater (water-heating appl)			rare	needed if it gets cold	needed if it gets cold		
Typical Heating COPs (@120°F supply)							
Ambent nperature	ц.	Equipment	1.45	1.30	3.50		
	47	Primary Energy	1.32	1.18	1.01		
	ц.	Equipment	1.30	1.15	2.30		
Ter	17	Primary Energy	1.18	1.05	0.66		

GAHP

GEHP

EHP

PEF - Electricity (US avg)	3.15
PEF - Natural Gas	0.91
COPs at the standard rating point	t (47°F)

What is a Gas-fueled Absorption Heat Pump?

- Warm Comfort: useable in all heating system types
- All Climates: excels in cool/cold weather
- All Fuels: natural gas, propane, fuel-oil, bio-fuels
- Very High Fuel Efficiency: 1.45 (COP)
- Natural Refrigerant (GWP = 0)

Many Uses:

- ✓ Residential Space-heating
- ✓ Residential Water-heating
- ✓ Commercial Water-heating
- ✓ Commercial Space-heating
- ✓ Pool Heating

30-50% energy & cost reduction

Reduces Heating Cost & Emissions by 30-50%

EHP = Standard 8 HSPF Electric Heat Pump

NG Rate: \$0.80 / therm *Elec Rate:* \$0.14 / *kWh* Emissions Data: eGRID 2016 CA Electrical Grid: 0.528 lb. / kWh (total average) 0.943 lb. / kWh (non-baseload)

Focus: Restaurant Water-heating

Gas Absorption Heat Pumps for Restaurant Hot Water + Free Cooling

- Full-service restaurant DHW loads dwarf all other food-service type buildings in gas usage.
- Often have waste heat that can be recovered (from cooking equipment, people, etc.), or just need to be cooled from weather.
- GAHP output ratio (heat to cool, ~2.25 : 1).
 DHW is the dominant load. Thus, GAHPs will always need to run, year-round.
- Free Cooling function is optional (switch on whenever it is needed) costs nothing.

Application Overview

Focus: Restaurant Water-heating

Specifications ("80K")

	Specification	Notes
Heating Output	80,000 BTU/hr	Gas input: 55,000 BTU/hr
Cooling Output	2.5 tons (with heating load)	Optional inside cooling, Or draw heat from ambient (outside) air
Venting	n/a	All combustion outdoors
Gas piping	1/2" OD	
Electrical Input	375W / therm	Per therm of delivered heat, 220 VAC single phase
COP gas (heat)	1.45 at 47°F and 100°F return to heat pump	COP is mainly a function of water temperatures (in, out), ambient temp, and cycle times.
Global Warming Potential	0.00	Refrigerant pair: H ₂ 0 / NH ₃ (charge = 0.2 kg /kW heating capacity; about 10 lbs)
DHW Capacity:	2,200 GPD	Running 16 hours non-stop with 70°F temp rise. However, GAHP will serve as baseload with a "peaker"
Renewable Energy	1/3 of output	Heat drawn from ambient air

<u>California</u>

- 88,000 restaurants
- Full-service locations consume 230 million therms per year for DHW (more than twice that of all other food services combined)
- 90% use gas to heat DHW; 85% use storage tanks the majority are 80% fuel efficient

Potential Market Impact

Focus: Restaurant Water-heating

CEC Project for Restaurant Field-Tests

- 2 demonstration sites (southern Calif.)
 - proves concept in live environment
 - gain insights on controls, installation, etc.
- Primary Market Research (contractors and end-users)
- Completion Scheduled: Q4-2019

Market Introduction Target: 2020-21

Commercialization Plan

Focus: Restaurant Water-heating

CEC Test

- Baseload/peak-load strategy enables maximum run-time; best economics
- Creates proactive replacement sales opportunity
- Load profile will determine economically preferred choice (e.g. 80 vs 140 kBTU)

Economics

		<u>S</u>	<u>tandard</u>	<u>Co</u>	<u>ndensing</u>	GA	<u>.HP 140K</u>	GA	<u>AHP 80K</u>
Customer	Equipment Price	\$	9,400	\$	12,700	\$	7,400	\$	5,300
	Installation	\$	1,250	\$	1,500	\$	11,200	\$	11,200
	Installed Cost	\$	10,650	\$	14,200	\$	18,600	\$	16,500
Annual Energy Cost Savings vs. Standard vs. Condensing				\$	800	\$ \$	3,100 2,300	\$ \$	2,500 1,700
Simple Pa vs. Stand vs. Condo	yback (years) ard ensing				4.4		2.6 2.0		2.3 1.4

Key Assumptions:

- * Full-service restaurant using 2,500 GPD DHW (temp rise = $70F^{\circ}$)
- * Cost of NG: 0.80 / therm. Cost of Electricity: 0.12 / kWh
- * Standard Scenario: (2) AO Smith Masterfit (199kBTU, 100gal storage, 80% AFUE)
- * Condensing Scenario: (2) AO Smith Cyclone Mxi (199kBTU, 100gal storage, 95% AFUE)
- * GAHP Scenario: (1) GAHP (140 kBTU + 100gal tank, 1.25 COP, 85% load fraction) -- OR -- GAHP Scenario: (1) GAHP (80 kBTU + 100gal tank, 1.35 COP, 66% load fraction)
 - -- AND -- (1) AO Smith Masterfit (199kBTU, 100gal storage, 80% AFUE, 15% or 34% load fraction)
- * Electrical Savings from Cooling included in GAHP (\$1,460 of the Fuel Savings). Parasitic power included.

* NO INCENTIVES

- Large commercial laundry serving multiple area hospitals, nursing homes, etc. Owns, cleans, and delivers the sheets, linens, uniforms, robes and more for each facility.
- Located in Johnson City, Tennessee. One of 55 sites in a company that processes 630 million pounds of laundry annually.
- Part of a national company providing general healthcare facility services to 1,300 locations.
- Entire facility uses ~50,000 GPD water
- Specific GAHP test project is to pre-heat 10,000 to 20,000 GPD of hot water currently served by a steam boiler. Installed March 2018

Project Overview

Nominal 80% natural gas fired boiler (20+ years old; 21mmBTU)

Current Configuration

Steam Heated Tank

Current Configuration

- Waste heat recovered from laundry process
- Steam-boiler driven (COP= 0.80)
- 16,000 gallons per day avg (per flow-metering)
- 6 days/week, 16 hrs/day
- Annual Heat: 43,800 Th
- Annual NG: 54,700 Th
- Annual NG Cost: \$50K

Ideal Configuration

- Multiple 140 kBTU GAHPs (optimized for max baseload coverage and max runtime)
- Boiler covers peaks and backup (significant increase in equipment life)
- Minimal impact on existing configuration

Optimizing Economics

- Payback: 3.7 4.2 years (no incentives) or 2.9 – 3.6 years (50¢ / Yr1-therm incentive)
- IRRs (10-year) 20-25% (before incentives)
- Ideal economic picture illustrates flatter load profile (i.e. larger tank)
- Optimal system size is 3 units (45% heat load offset)

Best Strategy: Select largest number of units consistent with load profile, thermal storage, & available cash.

Project Summary

- Field test installed 2018; data available in 2019
- Positive expected project economics, short payback periods
- Tight-margin operations motivate customers to save \$\$
- Often straight-forward technical application of GAHP technology
- Large consumers of domestic hot water with minimal progress in heating technology efficiency

Commercialization Strategy

Thermal Compressor

- ✓ OEMs as Partners, not competitors
- ✓ Leverages existing brand & marketing power
- ✓ Least-cost, Fastest-to-market, Lowest-risk Pathway

End Use Products

Development Status

- ✓ SMTI Initial Investment (Dec. 2017; multi-million, strategic)
- ✓ Two major products to launch within next 18-24 months (residential furnaces and residential water-heaters)
- \checkmark Business model can start with modest volumes.
- ✓ Volume in all market segments benefits all other products
- Expanding staff and reach with key focus on initial products (commercial hot water is important)

Two Fundamental Questions That Need Answers Before a Decision to Launch Brand New Product:

1) Will it work, at what cost?

2) Who will buy it, at what price?

What Can Gas Utilities Do Now?

 Develop incentive scenarios (hypothetical Ok)

 Contribute toward specific product development projects and field demonstrations

- Gas-fueled Absorption Heat Pumps have many building-heat applications
- > 30-50% savings in energy and operating costs generally strong economics
- Significant carbon and other emissions reductions
- Realistic path to market and large scale based on low-cost mfg platform
- Advanced product development now underway
- Gas utilities should begin preparations now

Scott Reed

VP Strategy & Marketing Stone Mountain Technologies, Inc. Scott.Reed@StoneMountainTechnologies.com www.StoneMountainTechnologies.com

Attic Slides

How Does It Work?

Vapor Compression Cycle

$$COP_{h} = Q_{cond} / E_{in} = 3.0-4.0$$
$$Q_{heat} = ~1.1 \times Q_{cooling}$$

 $COP_{PE} = COP_E \times (0.91 / 3.15)$ 0.91 = PEF_{NG} 3.15 = $PEF_E (US avg)$

Past Performance Testing

- GTI confirmed performance on successive generations of 80K GAHPs (2016-18)
- > Additional 80K units (4th gen) in the field 2018-20. Incorporating lessons learned from previous generations and exploring new uses (beyond residential space-heating).

Glanville, P, Keinath, C., and Garrabrant, M. (2017) *Development and Evaluation of a Low-Cost Gas Absorption Heat Pump*, Proceedings of the ASHRAE Winter Conference, Las Vegas, NV.

Data from GAHP Combi Sites highlighting improvements in 1st to 2nd generation prototypes (now on 4th gen)

Focus: Restaurant Water-heating

Standard

AOS Master-fit 199kBTU, 100gal, 80% TE

Condensing

AOS Cyclone Mxi 199 kBTU, 100gal, 95% TE

Economic Modeling Scenarios GAHP 140K

SMTI Gas Absorption HP + Indirect Tank 140 kBTU, 140% AFUE (assumed TE 125%)

+ AOS Master-fit 100gal, 80% TE

CEC Test Scenario

GAHP 80K

SMTI Gas Absorption HP + Indirect Tank 80 kBTU, 140% AFUE (assumed TE 135%)

Other Gas-Fueled Absorption Products

- Residential Space-heating (furnaces)
 - \$2.7 million project with DOE & major OEM partner
 - Final ready-for-market design & testing
 - Primary market research on contractors & consumers
- Residential Water-heating (storage water-heaters)
 - CEC / GTI project with major OEM partner
 - In-home field-tests of advanced design WHs
 - Primary market research on contractors & consumers
- NZE / Low-load Homes (wall-hung unit)
 - Engie (France) contract to design 20kBTU unit (tested by GTI)
 - Outdoor mounting provides combi (space & water heat)
 - Also applicable to N. American markets

Performance: vs. Supply & Ambient

Economic Assumptions

- Operations: 5,000 hours / year
- Average COP_{GAS}: 1.40 1.25 (depends on # of units)
- A single 140 kBTU unit
 - Delivers 7,000 therms / year
 - Offsets 3,700 therms / year (against 80%)
 - ✤ Parasitic Electricity: 304 W / therm_{OUTPUT}
- Cost of Natural Gas: \$0.904 / therm (TN)
- Cost of Electricity: \$0.100 / kWh (TN)

Expected Economic Outcomes

- Net Energy Cost Savings: \$3,200 / unit / year (TN)
- Increased life of existing boiler equipment

Test Configuration

- Single 140 kBTU GAHP (for baseload – max run time)
- Boiler covers balance (85% of current duty)
- Temporary nature of the test dictated intermediate tanks to exchange heat
- New heat exchangers (in small tanks) not ideally sized

